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A

A.1 INTRODUCTION

The WebPar program that accompanies this discusson produces estimated vaues for
unknown Weibull digribution parameters based on observations recorded in srength to failure
teds. The program and estimation methods are gpplicable to ceramic materids (monalithic or
composite) that do not exhibit any agppreciable bilinear or nonlinear deformation behavior. If the
techniques are gpplied to falure data from composte materids then the composte must contain
a uniformly distributed second phase (e.g., whiskers, short fibers, etc.) such tha the composte is
effectivedly homogeneous. In essence the maerid must behave in a linear dadtic, brittle fashion
if the user wishes to andlyze the failure deta by the methods that follow.

THEORY: PARAMETER ESTIMATION

Strength measurements are taken for one of two reasons ether for a comparison of the
relative qudity of two materids, or for the prediction of the falure probability for a sructurd
component. The andyticd details provided here dlow for ether. In order to obtain point estimates
of the unknown Welbull didribution parameters, well-defined functions are utilized that incorporate
the fallure data and specimen geometry. These functions are referred to as edimators. It is
desrable that an estimator be conagtent and efficient. In addition, the estimator should produce
unique, unbiased edtimates of the digtribution parameters. Different types of estimators exis,
including moment egimators, least-squares estimators, and maximum likdihood edimators.  This
discussion initidly focuses on maximum likdihood esimators (MLE) due to the efficiency and the
ease of gpplication when censored failure populations are encountered. The likelihood estimators
are used to compute parameters from falure populations characterized by a two parameter Weibull
digribution.  Alternatively, non-linear regresson estimators (discussed later) are utilized to caculate
unknown digtribution parameters for a three parameter Welbull digtribution.  Basicaly, this entire
discussion provides a theoretical background for the calculation of parameter estimates that take
place within the WeibPar program.

Many factors affect the eimates of the didtribution parameters. The totd number of test
goecimens plays a ggnificant role.  Initidly, the uncertainty associated with parameter estimates
decreases sgnificantly as the number of test specimens increases. However a point of diminishing
returns is reached when the cost of performing additiona strength tests may not be judtified. This
suggests that a practical number of strength tests should be performed to obtain a desired leve of
confidence associated with a parameter estimate. This point can not be overemphasized. However,
quite often 30 specimens (a widdy cited rule-of-thumb) is deemed a sufficent quantity of test
goecimens when esimating Weibull parameters. One should immediately ask why 29 specimens
would not suffice. Or more importantly, why is 30 specimens sufficient? The answer to this is
addressed in a later section where the detalls of computing confidence bounds for the maximum
likelihood estimates (these bounds are directly relate to the precison of the estimate) are presented.
Confidence bounds for the nontlinear regresson estimators are not available for reasons cited n
reference [1].

Tendle and flexurd specimens are the most commonly used test configurations for ceramic
materids. However, mogt ceramic materid systems exhibit a decreasing trend in materia strength
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as the test specimen geometry is increased (the ®-caled sze effect). Thus the observed strength
values are dependent on specimen size and geometry. Parameter estimates can be computed based
on a given specimen geomelry, however, the parameter estimates should be transformed and
utilized in a component rdiability andyss as materid-specific parameters.  The procedure for
transforming parameter estimates for the typicd specimen geometries just cited is outlined later in
the section entitted "Materid Specific MLE Parameters” The user should be aware that the
parameters edimated using nortlinear regresson edimators are materid  specific  parameters.
Therefore no trandformation is necessary after these parameters have been estimated.
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Figure A.1 Uncensored Sample that possibly demonstrates multiple failure populations.

Advanced ceramics typicaly contain two or more active flaw distributions (e.g., failures due
to inclusons or machining damage) and each will have its own drength digribution parameters.
The censoring techniques presented tere for the two-parameter Weibull distribution require postive
confirmation of multiple flaw digributions, which necesstates fractographic examination to
characterize the fracture origin in each specimen. Multiple flaw didtributions may dso be indicated
by a deviation from the linearity of the data from a sngle Webull digribution (eg., Figure A.L).
However observations of approximately linear behavior should not be consdered a sufficient reason
to conclude a sngle flaw didribution is active. The reader is strongly encouraged to integrate
mechanicd failure data and fractographic andysis.
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Figure A.2 Censored Sample with multiple failure populations identified.

As was just noted, discrete fracture origins are quite often grouped by flaw digtributions.
The data for each flaw distribution can dso be screened for outliers. An outlying observation is one
that deviates sgnificantly from other obsarvations in the sample. The reader should understand thet
an apparent outlying observation may be an extreme manifestation of the varigbility in strength.  If
this is the case, the data point should be retained and treated as any other observation in the fallure
sample. However, the outlying observation may be the result of a gross deviation from prescribed
experimental procedure, or possibly an error in caculating or recording the numerica vaue of the
data point in question. When the experimentdist is clearly aware tha ether of these Stuaions has
occurred, the outlying observation may be dscarded, unless the observation (i.e, the strength vaue)
can be corrected in a rational manner. The procedures for deding with outlying observations are
available dsawhere in the literature [2]. For the sake of brevity this discusson omits any discusson
on the performance of fractographic analyses, and omits any discusson concerning outlier tests.
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A.2 THEWEIBULL DISTRIBUTION

Experimentd data indicates that the continuous random varidble representing uniaxia
tensile strength of advanced ceramics is asymmetrica about the mean and will assume only postive
vaues. These characterigtics rule out the use of the normd distribution (as well as others) and point
to the use of the Welbull digribution or a smilaly skewed digribution. The three-parameter
Welbull probability dengty function for a continuous random dsrength variable, denoted as S, is
given by the expression

(a-1) e ﬁu
aa 0as -g0 aBs-90
f (s : expé U A.l
(5)= g_ag [} ég—zg A1)
fors >g ad
f.(s)=0 (A.2)

fors £ g Ineguaion (A.1) a isthe Weibull modulus (or the shape parameter), b isthe Weibull

scde parameter, and g is a threshold parameter. The cumulaive didribution is given by the
expression

F(s )=1& (A.3)
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fors £g.
Often the vaue of the threshold parameter is taken to be zero. In component design this

represents a conservative assumption, and yields the more widely used two-parameter Weibull
formulation. Here the expresson for the probability dendty function smplifiesto
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fors £ 0. Thecumulative digribution Smplifiesto
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foor s £ g Note tha in the ceramics literature when the two parameter Weibull formulaion is
adopted then 'm" is used for the Weibull modulus a, and either sq or s (See the discusson below
regarding the difference between so and sq) is used for the Weibull scale parameter. The WeibPar
program uses 'M", "Sig Not", and "Char Str* to notate the parameter estimates in the two parameter
formulation, and the program uses "M", "Sig Not", and "Threshold' for the three parameter
formulation. In the discusson that follows the @, b, g) notation is used exclusvely and reference is
made to the typica notation adopted in the ceramics literature. The reason for this is the tendency to
overuse the "s" symbol (eg., sq So, Si-falure observation, and si-threshold stress, efc.).
Throughout this discussion the symbol s ™ will imply gpplied stress.

If the random variable representing uniaxid tendle drength of an advanced ceramic is
characterized by a two-parameter Welbull digribution, i.e, the random drength parameter is
governed by equations (A.5) and (A.6), then the probability that a uniaxid test specimen fabricated
from an advanced ceramic will fail can be expressad by the cumulative digtribution function

é AU
Pf=1 - expg-?énaxz 3 (A.9)
e 4 %4

Note that S max IS the maximum norma siress in the component.  The parameter b is the Weibull
characterigic gtrength which is a locaion parameter dependent on the type of uniaxid test
soecimen (eg., tensle, flexurd, or pressurized ring) utilized. Thus bq (which has units of Stress)
will change with specimen geometry and dtress gradients in the test specimen.  In the ceramics
literature this parameter would correspond to sq for the two parameter formulation. An dterndive
expression for the probability of failure was derived by Weibull and expressed as

e &s 0 u
P=1 - expé gpg—= dvu (A.10)
f ~ C%b A

g vePaPd

This integration is peformed over dl tensle regions of the specimen volume if the strength
controlling flaws are randomly distributed through the volume of the materid, or over dl tendle
regions of the specimen area if flaws are redricted to the specimen surface. The Welbull materid
scde paameter by for volume defects has units of [sress x (volume)Y@]. If the strength
controlling flaws are redricted to the surface of the specimens in a sample, then the Welbull
materia scale parameter has units of [stress x(area)2]. This parameter corresponds to s in the
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ceramics literature for the two parameter formulation of the Weibull didribution. From a
computationa standpoint an esimate for by is obtaned from the falure data This vaue is
converted to an equivdent bo vdue. To perform this transformation equations (A.9) and (A.10)
can be eguaed for the test specimen geometry. The resulting expresson yields a reationship
between bg and bq for that specific specimen geometry. Expressons for the tensile specimen
geometry and flexura specimen geometry appear later in this appendix.
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A3 MAXIMUM LIKELIHOOD ESTIMATORS

The maximum likelihood technique has certain advantages, especidly when parameters
must be determined from censored fallure populations. When a sample of test specimens yidds two
or more digtinct flaw didributions, the sample is sad to contain censored data The methods
described in this discusson include censoring techniques that gpply to multiple concurrent flaw
digributions. A concurrent flaw digtribution is found in a homogeneous materid if every test
gpecimen fabricated from that materid contains representative flaws from each independent flaw
population. Within a given specimen dl flaw populations are present concurrently, and the flaw
digributions are competing with each other to cause falure. Thus this term is synonymous with
“competing flaw digributions” The methods for parameter estimation presented in this discusson
are not gpplicable to data sets that contain exclusve or compound multiple flaw distributions (see
[3] for a more detailed discusson on this topic). A smple example of a compound flaw distribution
is where every specimen contains the flaw didribution A, while some fraction of the specimens dso
contains a second independent flaw distribution B.  An excdusve flaw didribution is a type of
multiple flaw digtribution created by mixing and randomizing specimens from two or more versons
of a materid where each verson contains a different single flaw population. Thus, each specimen
contains flaws exclusvely from a single digtribution, but the totd data set reflects more than one
type of strength-contralling flaw.

The parameter edtimates obtained using the maximum likelihood technique are unique (for a
two-parameter Welbull didribution), and as the sSze of the sample increases, the edtimates
datistically approach the true vaues of the population. Let si, So, %, S, represent the ultimate
grength (a random variable) of the ceramic test specimens in a given sample. It is assumed that
the ultimate drength is characterized by the two-parameter Weibull digtribution.  The likelihood
function associated with this sample is the joint dengty of the N random variables, and thus is a
function of the unknown Weibull digribution parameters (a,b). The likdihood function for a
censored sample under these assumptions is given by the expression

L mgom 80 Cm dWl gy Em g
2=10 gig?: expg gii 'L"ﬂ/: O epg ?—J: (A-11)
EASECTIN A S A

This expression can be gpplied to a sample where two or more concurrent flaw distributions have
been identified from fractographic ingpection. For the purpose of discusson consder different
digributions identified as flaw types A, B, C, ec. When equation (A.11) is used to edimate the
parameters associated with the type-A flaw digtribution, then r is the number of specimens where
type-A flaws were found at the fracture origin, and i is the associaed index in the firsd summation.
The second summation is carried out for dl other specimens not failing from type-A flaws (i.e,
type-B flaws, type-C flaws, etc.). Therefore the sum is carried out from ( j=r+1) to N (the totd
number of specimens) where j is the index in the second summation. Accordingly, s; isthe i
falure sress for specimens associsted with type-A flaws  In a Smilar fashion s; is associated
with the other flaw types present. The likdihood function for the two-parameter Waeibull
digribution for asingle flaw population is defined by the expression
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& O

5.5 ¢

where r was taken equal to N in equation (A.11). The parameter estimates for the Welbull modulus
and the characteridic strength  are determined by taking the partid derivatives of the logarithm

of the likelihood function with respect to a as well as E;q and equating the resulting expressons

to zero. The sydem of eguaions obtaned by differentiating the log likdihood function for a
censored sampleis given by [4]

&I-Ioml
(=Nl

(A.12)

_g(s.ﬁ1 In(si) | L
= g(Si)a _Ngm(si)-g:o (A.13)
i=1
and
1
b, = $s (s )— (A.14)

Once again r is the number of falled specimens from a particular group of a censored sample. Thus
when a sample does not require censoring, 1 is replaced by N in equations (A.13) and (A.14). The
WeibPar program numericdly solves equation (A.13) first since a closed form solution for a* can
not be obtained from this expresson. Once a is determined this vaue is inserted into equation

(A.14) and b, is calculated directly.
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A.4 MATERIAL SPECIFIC MLE PARAMETERS

Rdationships between the edimate of the Welbull characterisic srength and the Welbull
materia scale parameter for any specimen configuration can be derived by equating the expressons
given by equations (A.9) and (A.10) with the modifications that follow. Begin by performing the
integration given in equation (A.10) such that

¢ 20
Po=1 - expb kvg‘l‘t’rmx 2 (A.15)
& b 24

Here k is a dimensonless congtant that accounts for specimen geometry and siress gradients [3].

Note that in generd, k is a function of the etimated Weibull modulus a’, and is aways less than
or equd to unity. The product kV is often refered to as the effective volume (with the
desgnation Ve ). The effective volume can be interpreted as the Sze of an equivaent uniaxia
tensle specimen that has the same risk of rupture as the test specimen or component.  As the term
implies, the product represents the volume of materid subject to a uniform uniaxid tendle dress.

Setting equations (A.9) and (A.10) equd to one another yields the following expression

(b, ), = (kv)** (b, ), (A.16)

where the subscript V attached to the parameter estimates denotes a volume integration.  Thus for
an abitrary test specimen, the experimentdist evauates the integral identified in equation (A.10)
for the effective volume (kV), and utilizes equation (A.16) to obtain the estimated Welbull
materid scae parameter 50. A smilar procedure can be adopted when fracture origins are
gpatiadly distributed at the surface of the test specimen.

As an example, the following equation defines the rdationship between the parameters for
tendle specimens

(6,), = V)" (b, ), (A.17)
where V is the volume of the uniform gage section of the tensle specimen, and the fracture origins

are didly digributed within this volume. For a tendle specimen in which fracture origins are
spatidly digtributed at the surface of the specimens tested,

(6,), = (A)*~(b, ), (A.18)
where A isthe surface area of the uniform gage section.

For flexurd specimen geometries, the relationships become more complex. The following
relaionship is based on the geometry of a flexurd specimen found in Figure A.3. For fracture
origins spatidly distributed within both the volume of aflexurd specimen and the outer load span
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L vERE, e

o), = ()12 % (A19)
|
7

where L; is the length of the inner load span, L, is the length of the outer load span, and V isthe
volume of the gage section defined by the expresson

V = bdl (A.20)

The dimensons b and d are identified in Figure A.3. For fracture origins spatidly distributed at the
surface of aflexurd specimen and within the outer load span,

i oL, O VIR
. g s 0 ELer T Y
(b)) = (bg) | Logiz——= + by &2 4 (A.21)
A A1 gea + 1g g & a, + 1 d
[ e Eb

L, " b

Figure A.3 Geometry for aflexura test specimen.
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Table A.1 Silicon Nitride Fracture Stress Data Utilized in Maximum Likdihood Estimation

Specimen Stress Specimen Stress Specimen Stress
1 411.0 MPa 11 495.0 MPa 21 543.0 MPa
2 429.0 MPa 12 496.0 MPa 22 552.0 MPa
3 431.0 MPa 13 497.0 MPa 23 553.0 MPa
4 434.0 MPa 14 504.0 MPa 24 553.0 MPa
5 435.0 MPa 15 510.0 MPa 25 554.0 MPa
6 445.0 MPa 16 516.0 MPa 26 568.0 MPa
7 452.0 MPa 17 518.0 MPa 27 572.0 MPa
8 472.0 MPa 18 524.0 MPa 28 585.0 MPa
9 474.0 MPa 19 527.0 MPa 29 588.0 MPa
10 477.0 MPa 20 532.0 MPa 30 614.0 MPa
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Figure A.4 Slicon nitride falure data (see Table A.1) and the probability of failure curve (blue
line) based on estimated vaues Maximum likelihood estimators of the Weibull
parameters. The 95% confidence bounds (black curves) based on the Bootstrap
technique are dso shown.
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In order to demonstrate how the previous discussion is utilized, consider the failure data in
Table Al The data represent the maximum dress at falure for bend specimens (four-point)
fabricated from HIPed (hot isodtatically pressed) slicon nitride [5]. The solution of equation (A.13)
requires an iterative numerica scheme. Using the WelbPar program a parameter etimate for the
Weibull modulus of a° = 10.75 was obtained. Subsequent solution of equation (A.14) yields a
vaue of Eq = 533 MPa These vdues for the Welbull parameter estimates were generated by
assuming a unimoda falure sample with no censoring (i.e, r = N). Figure A.4 depicts the

individua falure data and a curve based on the esimated vaues of the parameters. Next,
assuming that the falure origins were didributed a the surface of the specimens and then

insarting the estimated vaues of a and Eq into equation (A.21) dong with the specimen
geometry (i.e, Lo = 40 mm, L; =20 mm, d = 3 mm, and b =4 mm) yields(BO)A = 811.6 MPa x
(MP)Y10-75 Alternatively, if one were to assume that the failure origins were volume distributed,
then the solution of equation (A.19) yidds (b,)y = 666.3 MPa x (n?)Y1%75 The different vaues

obtained from assuming surface and volume fracture origins underscore the necessity of conducting
afractographic anayss.
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A.5 UNBIASING FACTORS AND CONFIDENCE INTERVALS FOR
MAXIMUM LIKELIHOOD ESTIMATES

If al falures from a group of observetions originate from a sngle flaw digtribution an
unbiased estimate of the Weibull modulus can be computed. Procedures for bias correction and
computing confidence intervas in the presence of multiple active flaw populaions are not well
developed at this time. In addition, unbiasing factors and parameters utilized to establish confidence
bounds are only avalable for likdihood edimates of the two-parameter Weibull digtribution.
Statigticdl bias can be defined numericdly in the following manner. Congder didributions of point
edimates generated numericaly usng Monte Carlo techniques. These digtributions are obtained by
numerous computer generated samples and the resulting point estimates are ranked for each sample
gze. If the mean vaue of the ranked data is equa to the expected value of the true parameter for a
given sample size, the estimator is said to be unbiased.

If an estimator yields biased results the vaue of the individud estimates @an be corrected if
the esimators are invariant (see Thoman et d. [6] for a proof of invariance for the two-parameter
maximum likelihood edtimators presented eerlier). The bias associated with the estimate of the
characterigtic strength is minima (<0.3% for 20 test specimens, as opposed to @7% bias for a with
the same number of specimens), and is usudly ignored. However, the WelbPar program enables
dlows for the unbiasng of the Welbull modulus and the Webull characteristic strength.  The
user should dso keep in mind that datidical bias asociated with the maximum likelihood
estimators presented here can aways be reduced by increasing the sample size.

The amount of deviation between the biased estimate and the expected vaue of the true
parameter can be quantified ether as a percent difference or with unbiasing factors. In keeping with
the accepted practice in the open literature, statistica bias is quantified in the WelbPar program
through the use of unbiasing factors (denoted as UF). Unbiasing factors (as well as the ratios used
to compute upper and lower bounds for a confidence interval) are obtained from the ranked
digributions of point estimates mentioned above. In the WeibPar program these unbiasing factors
are located in "look-up" tables that are accessed directly by the program. The program computes

unbiased vaues of a and Eq directly, i.e, this cdculation is transparent to the user. The user

should note that the "look-up" tables of unbiasing factors for a and Eq in the WeibPar program
are far more extensve than the tables published in reference [8].

As an example of computing unbiased egtimates of the Weibull modulus consider the same
unimoda failure sample presented in Table A.1l. The sample contained 30 specimens and the
biased estimate of the Weibull modulus was determined to be @ = 10.75. The unbiasing factor
corresponding to this sample size is UF = 0.953 (obtained from the "look-up" tables). Thus, the
unbiased estimate of the Welbull modulusis given as

&, =&’ UF
= (10.75)(0.953) (A.22)
=10.24
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Confidence intervds quantify the uncertainty associated with a point edimae of a
population parameter. The Sze of a confidence intervd for maximum likelihood estimates of both
Weibull parameters will diminish with increesng sample sze. The vaues used to condruct a
confidence interval are based on percentile digtributions obtained by the Monte Carlo smulations
mentioned earlier in this section. For example, the 90% confidence interva for the Weibull
modulus is obtained from the 5 and 95 percentile didributions of the ratio of a to the true
population vaue a. The ratios @ /a ) necessary to congtruct the 90% confidence interval can be
found in Table 2 of reference [7]. However, reference [7] limits the user to just the 90%
confidence interva. The WelbPar program contains the values needed to compute the lower
confidence bounds associated with the 2.5%, 5%, 7.5%, 10%, 12.5%, 15%, 20%, 25% percentile
digributions. Smilarly, the WeibPar program contains the vaues needed to compute the upper
confidence bound associated with the 75%, 80%, 85%, 87.5%, 90%, 92.5%, 95%, 97.5%
percentile digributions. Thus by carefully sdecting the upper and lower confidence bounds the
user can congruct a number of different confidence intervas. Findly the user should keep in
mind that the biased edtimate of the Webull modulus must be used to construct the confidence
bounds.

Confidence intervas can ds0 be condructed for the esimated Weibull characterisic
drength. However, the percentile distributions needed to congtruct the intervals do not involve the
same normdized ratios or the same tables as those used for the Weibull modulus. Define the
function

. 9 (A.23)
=T A.
&, 5

t =aln

The 90% confidence interva for the characterigic strength is obtained from the 5 and 95 percentile
digributions of t. For the point estimate of the characterigtic strength, these percentile distributions
can be found in Table 3 of reference [7]. However, reference [7] limits the user to just the 90%
confidence bounds. The WeibPar program contains the values needed to compute the lower
confidence bounds associated with the 2.5%, 5%, 7.5%, 10%, 12.5%, 15%, 20%, 25% percentile
digributions.  Smilarly, the WeibPar program contains the values needed to compute the upper
confidence bound associated with the 75%, 80%, 85%, 87.5%, 90%, 92.5%, 95%, 97.5% percentile
digributions. Thus by carefully sdecting the upper and lower confidence bounds the user can
congruct a number of different confidence intervals. Note that the biased estimate of the Weibull
modulus must also be used here. Again, this procedure is not appropriate for censored statistics. In
addition, the reader is cautioned that equation (A.23) can not be utilized in developing confidence

bounds on 50. Therefore the confidence bounds on Eq should not be converted through the use
of equations (A.9) and (A.10).

The upper bound for the 90% confidence interval associated with & for the sample
presented in Table A.1 isgiven by
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a—TUPPef: a—T/q 0.95
=(10.75)/(0.822) (A.24)
=13.08

where go.o5 is obtained from Table 2 of reference [7], or the gppropriate "look-up" table associated
with the WelbPar program, for a sample size of 30 failed specimens. Thelower bound is

o= A1,
= (10.75)/(1.335) (A.25)
= 8.05

where qoos is dso obtained from Table 2 of reference [7], or the agppropriate "look-up" table
associated with the WeibPar program.

Similarly, the upper bound for the 90% confidence interva associated with Hq is

L -
bq UPPET= bq e(pge.?g

(7]
29.332%

=533 .
( ) ep €10.75 g

(A.26)
= 550 MPa

where to.05 is obtained from Table 3 of reference [7], or the appropriate "look-up” table associated
with the WeibPar program, for a sample size of 30 failed specimens. The lower bound on Eq is

~

~ @t §
=b exp g 05 +
q a g
0.335§
533)exp & Q
(533)exp €10.75 »

= 517 MPa

q lower

(A.27)

where tggos5 IS dso obtained from Table 3 of reference [7], or the appropriate "look-up” table
associated with the WelbPar program. Thus it can be stated with 90% confidence that the estimate

of the Weibull modulus for this materia is bounded such that 8.05 £ a £ 13.08. Smilaly, it can

be dated that the estimate of the characteristic strength is bounded such that 517 £ Eq £ 550.

The sze of these bounds depend directly on the sample sze. If the bounds in this particular case
were unacceptable, then the sample sze should be incressed. The sze of the confidence
intervals addresses the question of how many samples are sufficient.

July 2005 Page 16



WeibPar Theory — Time Independent Connecticut Reserve Technologies, Inc.

A.6  NON-LINEAR REGRESSION ESTIMATORS FOR A
THREE-PARAMETER WEIBULL DISTRIBUTION

To date, most reliability analyses performed on dructurd components fabricated from
ceramic materids have utilized the two-parameter form of the Weibull distribution. The use of a
two-parameter Welbull digtribution to characterize the random nature of materid drength implies a
non-zero probability of falure for the full range of applied sress.  This represents a consarvative
design assumption when andyzing sructurd components.  The three-parameter form of the Welbull
digribution was presented earlier in equations (A.1) and (A.2). The additiond parameter is a
threshold stress (g) that dlows for zero probability of fallure when the applied dress is a or
below the threshold vaue. Certain monolithic ceramics have exhibited threshold behavior. The
reader is directed to an extendve data base assembled by Quinn [8], the dlicon nitride data in
Foley et d. [9], as wdll as data (with supporting fractography) presented by Chao and Shetty [10]
that was andyzed later in Duffy et d. [1].

When drength data indicates the existence of a threshold stress, a three-parameter Weibull
digribution should be employed in the stochadtic failure anadlyss of dructura components. By
employing the concept of a threshold dress, an engineer can effectively talor the desgn of a
component to optimize gructurd religbility. To illudrate the approach Duffy et d. [1] embedded
the three-parameter Waebull didribution in a rdigbility modd tha utilized the principle of
independent action (PIA). Andyss of a space shuttle main engine (SSME) turbo-pump blade
predicted a substantid improvement in component rdiability when the three-parameter Weibull
digribution was utilized in place of the two-parameter Weibull didribution. Note that the
three-parameter form of the Weibull distribution can easily be extended to Batdorf's [11,12] modd,
reiability models proposed for ceramic compostes (see Duffy e d. [13], or Thomas and
Wetherhold [14]), as well as the interactive and noninteractive reliability models presented earlier.

The nontlinear regresson method proposed by Margetson and Cooper [15] is highlighted.
Coding for the nortlinear regresson esimators have been formulaied for two basc test
configurations. the four-point bend specimen and the uniaxid test specimen. However, these
edimators mantain certan disadvantages relative to bias and invariance, and these issues were
explored numericdly in Duffy et d. [1]. The Monte Calo dmulaions in Duffy et d. [1]
demongtrated that the functions proposed by Margetson and Cooper [15] are neither invariant nor
unbiased. However, they are asymptoticaly well-behaved in that bias decreases and confidence
intervals contract as the sample Sze increases.  Thus, even though bias and confidence bounds may
never be quantified usng these nonlinear regresson technique, the user is guaranteed that
edimated vaues improve as the sample Size is increased.

Regresson andyss podtulates a relationship between two varigbles. In an experiment
typicaly one variable can be controlled (the independent variable) while the response varigble (or
dependent varigble) is not. In asmple failure experiments the materid dictates the srength at failure,
indicating that the failure dress is the response variable.  The ranked probability of falure (P;) can
be controlled by the experimentdidt, snce it is functiondly dependent on the sample sze (N).
After aranging the observed failure dresses (si, S2, S3, ™, Sp) in ascending order, and
specifying
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(A.28)

then dearly the ranked probability of falure for a given dress leve can be influenced by increasing
or decreasing the sample size. The procedure proposed by Margetson and Cooper [15] adopts this
philosophy. They assume that the specimen falure dress is the dependent variable, and the
associated ranked probability of failure becomes the independent variable.

Using the three parameter verson of equation (A.10), an expression can be obtained relaing
the ranked probability of falure ;) to an edtimate of the failure strength ;). Assuming uniaxia
dress conditions in a test gpecimen with aunit volume, equation (A.10) yieds

(N

a

AN

(O

Si

~ ~¢ &l
g+bdng——

dng— (A.29)

®
S

where @, b and § ae edimates of the shape parameter @), the scae parameter (b), and

threshold parameter (g), respectively. Expressons for the evaluation of these parameters for a
test gpecimen subjected to pure bending are found in Duffy et d. [1]. Defining the resdud as

di = §i - sij (A.30)

where s; is the i ranked failure stress obtained from actua test data, then the sum of the squared
resduasis expressed as

N 2 N~ 1a 2
& (di)*= & @+bw)""-si) (A-31)

& 1 0
co= : A.32
Wi T R (A-32)

Note that the forms of s; and W change with specimen geometry (see the previous discusson
relating to the four-point bend specimen geometry). It should be apparent that the objective of
this method is to obtain parameter estimates that minimize the sum of the squared resduds
Setting the patid derivatives of the sum of the sguared residuas with respect to a, b and g
equd to zero yidds the following three expressons

é N U é N ué N g u
Néé_sl(wl ) q- éési(jéé (w; )" "
6': €i=1 U ei=1 uei=1 u (A 33)
N 5 é N z-i‘ué N a_u .
NQ (w)* - g (w)""gea (wi )%y
i=1 €i=1 uei=1 u
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i=1
in terms of the parameter edtimates. The solution of this system of equations is iterative, where the
third expresson is used to check convergence a each iteration. The initid solution vector for this
system is determined after assuming @ =1. Then b is computed from equation (A.33) and § is
cdculated from equation (A.34). The vaues of these parameter estimates are then inserted into
equation (A.35) to determine if the convergence criterion is satidied to within some
predetermined tolerance (Keony). If this expresson is not satisfied, a is updated and a new
iteration is conducted.  This procedure continues until a st of parameter edimates are
determined that satisfy equation (A.35).

The edimators perform reasonably well in comparison to estimates of the two-parameter
Weibull digribution for the dumina data found in Table A.2. Figure A5 is a plot of probability of
falure versus falure dress for this data The draight line represents the two parameter maximum

likelihood fit to the data where & = 12.7, b = 395 (@° 0). The non-linear curve represents the

three parameter linear regression fit to the data where & = 2.71, b = 89.7, and § = 301. Note
that the three-parameter digtribution appears more efficient in predicting the falure data in the
high religbility region of the graph. This is a quditative assessment.  Goodness-of-fit datistics
such as the Kolmogorov-Smirnov detidic, the Anderson-Darling detidtic, and likdihood retios
provide quantitative measures to etablish which form of the Webull digtribution would best fit
the experimental data These ddidics are utilized in conjunction with hypothess teding to
assess the ggnificance leve a which the null hypothesis can be rgected. Comparisons can then
be made based on the value of the significance leve.
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Table A.2 Alumina Fracture Stress Data Utilized in Nonlinear Regresson Egtimation
Specimen Stress Specimen Stress Specimen Stress
1 320 MPa 13 368 MPa 24 393 MPa
2 334 MPa 14 369 MPa 25 393 MPa
3 335 MPa 15 370 MPa 26 395 MPa
4 341 MPa 16 381 MPa 27 406 MPa
5 343 MPa 17 383 MPa 28 408 MPa
6 345 MPa 18 385 MPa 29 417 MPa
7 350 MPa 19 385 MPa 30 420 MPa
8 351 MPa 20 386 MPa 31 430 MPa
9 352 MPa 21 389 MPa 32 434 MPa
10 363 MPa 22 391 MPa 33 436 MPa
11 365 MPa 23 392 MPa 34 447 MPa
12 367 MPa
1“.1 D:ha_WeibPar' data'papers'appendix’table_a2.dat ;Igljj
Data I Parameters  weibull Plot I Parameter Bounds I Histogram/FDF I
Data Monte  LIM2 | MLEZ-E MLE2-U Boot EEnds m MLE3 LIM3 i - MLEES
Weibull Probability of Failure
2]
1
~ o
£
é 3‘ *
= -4—5
e
B - ; | . :
300 340 400 450
Fracture Stress
Figure A.5 Aluminafallure data (see Table A.2) and probability of failure curves based on
estimated parameters for the two- and three-parameter Welbull ditributions.
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