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Introduction 
 Ceramic materials can easily exhibit complex thermomechanical behavior that is both 
inherently time-dependent and hereditary in the sense that current behavior depends not only on 
current conditions, but also on thermomechanical history.  The ability of a brittle material 
component to sustain load degrades over time due to a variety of effects such as oxidation, creep, 
stress corrosion, and fatigue.  The design methodology presented in this report combines the 
statistical nature of strength-controlling flaws with the mechanics of crack growth.  Using the fast 
fracture and fatigue parameters, as well as the results obtained from a finite element analysis, 
component reliability as a function of time can be computed.  The NASA CARES/Life algorithm 
embodies these concepts and this software was utilized in analyzing the model parameters and in 
determining component life.  Life can be assessed in terms of time to failure, or in terms of cycles 
to failure.  With this type of reliability algorithm, the gun barrel design engineer can make 
appropriate design changes until an acceptable component life has been computed.  In addition to 
the fast fracture parameters, i.e, the Weibull shape and scale parameters, the analysis of time-
dependent reliability necessitates evaluation of distinct parameters relating to fatigue crack growth 
and fatigue life.  The theoretical development that supports the estimation of fatigue parameters is 
outlined in this report. 
 
 Under this task estimation methods for the geometry independent parameters needed for  
time dependent (sub-critical crack growth) component reliability analyses were established for data 
obtained using either the C-ring and the sectored flex bar.  These geometry independent parameters 
(BV and BA) are similar to the material specific characteristic strengths (s0V and s0A)  parameters 
needed to conduct a fast fracture component analysis.  The NASA CARES/Life algorithm has 
estimation methods established for BV and BA that are associated with a limited number of 
specimen configurations, but these specimen configurations do not include the C-ring or the 
sectored flex bar.  It was proposed that estimates for the power law exponent N, and the geometry 
independent parameter, B be extracted from the time dependent ceramic data generated by ARL.  
However, at the time this report was prepared the requisite time dependent failure data was not 
available.  Establishing confidence bounds on the time dependent material parameters using 
bootstrap techniques is briefly discussed along with the feasibility of incorporating the requisite 
computational methods into a parameter estimation computer algorithm.  Finally, since a limited 
amount of time dependent ceramic failure data will be made available early in the project, an effort 
to explore and establish pooling procedures for time dependent parameter estimation will be 
conducted.   

 

Subcritical Crack Growth 
 Ceramics exhibit the phenomenon of delayed fracture or fatigue.  With load histories at 
stress levels that do not induce fast fracture, there is a regime where subcritical crack growth 
(SCG) occurs.  Subcritical crack growth involves a combination of simultaneous, deleterious and 
synergistic failure mechanisms.  These can be grouped into two categories: (1) crack growth due to 
stress corrosion, and (2) crack growth due to mechanical effects arising from cyclic loading.  Stress 
corrosion reflects a stress-dependent chemical interaction between the material and its 
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environment.  Water, for example, has a pronounced deleterious effect on the strength of ceramics.  
Higher temperatures also tend to accelerate this process. 
 
 Models for SCG that have been developed tend to be semi-empirical and approximate the 
behavior of crack growth phenomenologically.  Experimental data indicates that crack growth rate 
is a function of the applied stress intensity factor (or the range in the stress intensity factor).  
Curves of experimental data show three distinct regimes or regions of growth when the data is 
graphically depicted as the logarithm of the rate of crack growth versus the logarithm of the mode I 
stress intensity factor (reference Figure 1).  The first region indicates threshold behavior of the 
crack, where below a certain value of stress intensity the crack growth is zero.  The second region 
shows an approximately linear relationship of stable crack growth.  The third region indicates 
unstable crack growth as the materials critical stress intensity factor is approached.   
 

 

Figure 1  Crack Velocity as a Function of Stress Intensity (K) in Monolithic Ceramics.   
Crack Initation Does Not Occur when K<Kth.  SCG can occur when Kth<K<KIc.   

Fracture occurs when K> KIc. (Regions I, II, and III) 
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 The second region typically dominates the life of the material.  For the stress corrosion 
failure mechanism, these curves are material and environment sensitive.  The most often cited 
models in the literature regarding SCG are based on power law formulations for the rate equations.  
Power law formulations are used to model the second region of the experimental data cited above 
for both the stress corrosion and the fatigue.  This power law formulation is expressed as 
 

 
( ) t),,,a(,,,

t),,,(KA 
dt

t),,,da( N
Ieq

zyxYtzyxA

zyx
zyx

NN
Ieqσ=

=
 (1) 

 
where A and N (crack growth exponent) are material/environmental constants and σIeq(x,y,z,t) is the 
mode I stress.  In order to utilize this relationship in a reliability setting, the mode I stress 
σIeq(x,y,z,t f) at the time of failure (t = t f ) is transformed to its critical effective stress distribution at 
time t = 0.  The transformation is obtained by solving the following classical fracture mechanics 
expression for the crack length a 
 
 t),,,a( Y t),,,( = t),,,(K IeqIeq zyxzyxzyx σ  (2) 
 
where Y is a function of crack geometry, and a(x,y,z,t) represents the crack length at time t. 
Differentiating the resulting expression for a with respect to time, and setting this differential 
equation equal to the right hand side of equation 1 yields the following expression  
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where 
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2
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2N
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 (4) 

 
is a material/environmental fatigue parameter, KIc is the critical stress intensity factor, and 
σIeq(x,y,z,t f) is the equivalent stress distribution in the component at time t = t f.  The parameter B 
has units of stress2 × time.  Note that Y is assumed constant for subcritical crack growth.  The 
parameter A, Y and KIc are never computed directly, but are manifested through the parameter B via 
the expression above when a value for the parameter B  is estimated from experimental data.  The 
transformation given by equation 3 permits the use of the Weibull fast fracture expressions in 
evaluating time dependent component reliability.  The use of equation 4 strongly implies that the 
parameter B is inherently tied to a specific defect population through the use of Y and KIc. 
 
 The subcritical crack growth model is combined with a two-parameter Weibull cumulative 
distribution function to characterize the component failure probability as a function of service 
lifetime.  This is accomplished by equating σe with σIeq,0.  Multiaxial stress fields are included by 
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using the principle of independent action (PIA) model, or the Batdorf theory.  These multiaxial 
reliability expressions were outlined in the previous discussion on time-independent reliability 
analysis models.   

 

SCG Model  for Creep (Static Fatigue) – Tensile Specimen 
 Creep loading, also known as static fatigue to the ceramist, is defined by the engineer as the 
application of a constant load over time.  To the ceramist creep defines a specific type of 
deformation mechanism.  This report adopts the engineer’s viewpoint as well as the engineering 
nomenclature for describing time dependent load histories in general.  For this load case the mode I 
equivalent stress, σIeq(x,y,z,t), is independent of time and is thus denoted by σIeq(x,y,z).  Integrating 
the right hand side of equation 3 with respect to time yields 
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SCG Model  for Monotonic Load (Dynamic Fatigue) – Tensile Specimen 
 Monotonically increasing uniaxial loading, also know as dynamic fatigue to the ceramist, is 
defined as the application of a constant stress rate &σ (x, y, z) over a period of time, t.  Assuming the 
applied stress is zero at time t=0, then 
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Substituting equation 6 into equation 3 results in the following expression for effective stress 
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Parameter Estimation  – Tensile Dynamic Fatigue Data 
 The approach for computing the time dependent strength parameters B and N from failure 
data is presented in this section for a specific specimen geometry, i.e., a uniaxial test specimen.  
Hence the stress state is uniform throughout the specimen, and is not spatially dependent.  This is 
not the case for C-ring specimens, or sectored flex bars (see next section) that will be used to 
characterize material properties in this program.  Begin by expressing the uniaxial formulation of 
the probability of failure as 
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for flaw distributions distributed through the volume of all test specimens (a similar expression 
exists for surface flaw distributions).  Here σ~  is referred to the inert strength in the ceramics 
literature (e.g., Appendix in ASTM C 1368). Under the assumption that 
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where σ̂  is the stress at failure.  For monotonically increasing stress tests (dynamic fatigue) 
equation 7 simplifies to 
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under the assumption indicated in equation 9.  Thus the stress at failure σ̂  can be expressed as  
 
 ( ) ( ) ( ) σσσ &̂~1ˆ 21 −+ += NN BN  (11) 
 
 
Now let 
 
 ( ) ( ) ( ) 21 ~1 −+ += NN BND σ  (12) 
 
then 
 
 ( ) ( ) σσ &̂ˆ 11 ++ = NN D  (13) 
 
Taking the natural log of both sides of equation 13 yields 
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Thus plotting the log of the stress at failure σ̂  against the log of the applied stress rate σ&̂  should 
yield a straight line with a slope of [1/(N+1)].  Typically linear regression techniques are used to 
determine the parameters N and D.  Once these parameters are determined from the time 
dependent failure data this information would be combined with the Weibull distribution 
parameter estimates and the parameter B would be computed from the expressions developed 
below. 
 
 Substitution of equation 10 into equation 8 yields 
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Solving this expression for σ̂  yields 
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Comparing equation 11 and 16 leads to 
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and solving for B from this last expression yields 
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 In order to compute the parameter B from equation 18 a probability of failure must be 
utilized.  The simplest approach would be to take 
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  50.=fP   (19) 
 
since linear regression methods are used.  Also note that the parameter N will be independent of 
the specimen geometry used to generate time to failure data, whereas the parameter D is strongly 
dependent on the specimen geometry.  This is similar to the fast fracture Weibull parameters, i.e., 
m is not dependent on the specimen geometry where σθ  is.  Noting that D is specimen 
dependent, keep in mind that the development above was presented for creep in a uniaxial test 
specimen.  The next section develops an expression for B for generic test specimens. 

 

Parameter Estimation – Dynamic Fatigue Data, Arbitrary Specimen Geometry 
 The approach for computing the time dependent strength parameters B and N from failure 
data for an arbitrary specimen geometry is presented in this section.  Here the stress state and 
stressing rate are assumed to vary spatially throughout the specimen.  Begin by expressing the 
probability of failure as 
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This uniaxial stress formulation will be expanded to include multiaxial stress states momentarily.  
The uniaxial formulation here is strictly for convenience.  Noting that 
 
 ( )zyx ,,ˆˆ σσ =  (21) 
 
and the stressing rate are spatially dependent, but 
 

 
σ
σ
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is constant throughout the specimen geometry, i.e., tf  is not spatially dependent.  Inserting the 
results from equations 10 and 22 into equation 20 yields 
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If we identify 
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Next, identify maxσ  as the maximum stress in the arbitrary component associated with the failure 
stress distribution ( )zyx ,,ˆˆ σσ = , then 
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In the Task #1 Report entitled "Evaluation of Effective Volume & Effective Area for C – Ring 
Test Specimen" prepared under the previous contract  the integral appearing in equation 27 was 
identified as an effective volume, i.e.,  
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Here the subscript T emphasizes that this effective volume is a "temporal" effective volume.  The 
modulus m2 is not the fast fracture Weibull modulus as it was in the previous report.  This 
modulus is a function of the fast fracture modulus and the power law exponent, as indicated in 
equation 25. 



WeibPar Theory –Time Dependent   Connecticut Reserve Technologies, Inc. 

_____________________________________________________________________________________________________________________ 
July 2005  Page 10 
 
 

 
 Now equation 27 can be written as 
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and with 
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From equation 13, one can deduce that 
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which further simplifies equation 31, i.e., 
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Noting that this derivation has focused on strength limiting flaws distributed through the volume, 
at this point the notation BV, NV and DV are adopted.  This infers that these time dependent 
parameters are associated with a volume flaw population.  Hence this last expression can be 
solved for the parameter BV such that 
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 A similar derivation for strength limiting flaws distributed along the surface of test 
specimens would lead to the following expression 
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where kAT is the "temporal" effective area for the specimen being analyzed. 

 

Data Analysis 
 At the time this report was written time dependent data provided by ARL was not 
available for any of the candidate ceramics under consideration as gun barrel material.  In order 
to demonstrate how the approach outlined above can be implemented, a silicon nitride data base 
(NT551 - Saint Gobain/Norton Industrial Ceramics) available in the open literature (Andrews et 
al., 1999) was utilized.  Data tables associated with the Saint Gobain material are included in this 
report to help clarify the procedure, and this information is referred to as the "Andrews data."  
This failure data includes several temperatures, stressing rates and specimen geometries.  
However, this report focused on the room temperature bend bar data (ASTM 1161 – B specimen 
geometry) in order to assure the data under consideration was attributable to the sub-critical 
crack growth failure mechanism, and not a creep failure mechanism which can occur at elevated 
temperatures.  
 
 Three stressing rates are available at room temperature in the Andrews data.  Fast fracture 
Weibull parameters were estimated from the highest stressing rate data (30 MPa/sec – see Table 
I).  The Andrews data provided at the highest stressing rate were associated with surface defects.  
However, this data was censored due to the presence of exclusive flaws.  Eight failure strengths 
from the highest stressing rate data were identified as belonging to an "exclusive flaw 
population."  The fast fracture parameter estimation techniques available in ASTM C 1239 are 
only applicable to "concurrent flaw populations."  Thus these eight pieces of information were 
not used in the calculations of the Weibull parameters.  From this censored information an 
unbiased Weibull modulus of 98.8=Am  and a characteristic strength of ( ) MPaA 86.805=θσ  
were established.  Based on the B-specimen bend bar geometry tested under specifications set 
forth in ASTM 1161, the material specific strength was established at 
( ) ( ) 111.0

0 4.337,1 mmMPaA ⋅=σ .  As indicated in the discussions in the previous section, the fast 
fracture Weibull parameters must be computed prior to establishing values for the time 
dependent parameters. 
 
 Next, the time dependent parameters NA and DA were computed employing linear 
regression techniques, and utilizing the data listed in Tables I through III.  Note carefully that the 
data in all three tables have been censored.  Two bend bar specimens from the intermediate 
stressing rate data (0.3 MPa/second) and five bend bar specimens from the low stressing rate data 
(0.003 MPa/second) failed from volume defects.  A sixth bend bar specimen from the low 
stressing rate data failed outside the gage section.  These data were censored in a very simple 
minded fashion, i.e., they were removed from the database prior to computing NA and DA.  This 
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may not be rigorous, but currently censoring techniques for time dependent parameters have not 
been developed.  If subcritical crack growth is a dominant failure mode, then issues such as 
censoring time dependent data should be addressed later in the project.  Given the data in Tables 
I through III, then 76=AN  and 77.713=AD , where the units for DA are consistent with MPa for 
stress, and mm for units of length.   
 

Failure strength as a function of stressing rate for the data listed in Tables I through III, as 
well as the regression line based on the estimated values of NA and DA listed above are plotted in 
Figure 2. 

 
Table I  NT551 Fast Fracture Data from Andrews et al. (1999) 

 

Test 
Temperature 

(°C) 

Stress 
Rate 

MPa/s 

Machining 
Direction 

(Transverse 
or 

Longitudinal) 

Strength 
(MPa) 

Flaw 
Type 

20 30 Trans 705.47 SURFACE 
20 30 Trans 707.23 SURFACE 
20 30 Trans 710.60 SURFACE 
20 30 Trans 751.86 SURFACE 
20 30 Trans 773.06 SURFACE 
20 30 Trans 777.69 SURFACE 
20 30 Trans 778.47 SURFACE 
20 30 Trans 779.89 SURFACE 
20 30 Trans 792.33 SURFACE 
20 30 Trans 793.37 SURFACE 
20 30 Trans 796.46 SURFACE 
20 30 Trans 804.46 SURFACE 
20 30 Trans 820.27 SURFACE 
20 30 Trans 832.23 SURFACE 
20 30 Trans 832.43 SURFACE 
20 30 Trans 834.38 SURFACE 
20 30 Trans 869.07 SURFACE 
20 30 Trans 869.13 SURFACE 
20 30 Trans 870.81 SURFACE 
20 30 Trans 888.87 SURFACE 
20 30 Trans 922.28 SURFACE 
20 30 Trans 926.12 SURFACE 
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Table II  NT551 Failure Data at the Intermediate Stressing Rate, from Andrews et al. (1999) 
 

Test 
Temperature 

(°C) 

Stress 
Rate 

MPa/s 

Machining 
Direction 

(Transverse 
or 

Longitudinal) 

Strength 
(MPa) 

Flaw 
Type 

20 0.3 Trans 435.31 SURFACE 
20 0.3 Trans 530.39 SURFACE 
20 0.3 Trans 582.25 SURFACE 
20 0.3 Trans 612.05 SURFACE 
20 0.3 Trans 634.66 SURFACE 
20 0.3 Trans 639.45 SURFACE 
20 0.3 Trans 639.71 SURFACE 
20 0.3 Trans 641.32 SURFACE 
20 0.3 Trans 643.34 SURFACE 
20 0.3 Trans 653.88 SURFACE 
20 0.3 Trans 663.45 SURFACE 
20 0.3 Trans 667.56 SURFACE 
20 0.3 Trans 670.92 SURFACE 
20 0.3 Trans 678.17 SURFACE 
20 0.3 Trans 684.66 SURFACE 
20 0.3 Trans 686.40 SURFACE 
20 0.3 Trans 687.46 SURFACE 
20 0.3 Trans 690.67 SURFACE 
20 0.3 Trans 694.79 SURFACE 
20 0.3 Trans 701.64 SURFACE 
20 0.3 Trans 701.66 SURFACE 
20 0.3 Trans 713.92 SURFACE 
20 0.3 Trans 717.68 SURFACE 
20 0.3 Trans 726.28 SURFACE 
20 0.3 Trans 735.74 SURFACE 
20 0.3 Trans 739.71 SURFACE 
20 0.3 Trans 740.71 SURFACE 
20 0.3 Trans 744.72 SURFACE 
20 0.3 Trans 788.99 SURFACE 
20 0.3 Trans 825.48 SURFACE 
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Table III  NT551 Failure Data at the Lowest Stressing Rate, from Andrews et al. (1999) 
 

 

Test 
Temperature 

(°C) 

Stress 
Rate 

MPa/s 

Machining 
Direction 

(Transverse 
or 

Longitudinal) 

Strength 
(MPa) 

Flaw 
Type 

20 0.003 Trans 517.67 SUR-MD 
20 0.003 Trans 517.43 SUR-MD 
20 0.003 Trans 584.76 SUR-MD 
20 0.003 Trans 596.40 SUR-MD 
20 0.003 Trans 611.07 SUR-MD 
20 0.003 Trans 622.29 SUR-MD 
20 0.003 Trans 556.71 SUR-MD 
20 0.003 Trans 557.77 SUR-MD 
20 0.003 Trans 577.89 SUR-MD 
20 0.003 Trans 606.03 SUR-MD 
20 0.003 Trans 571.32 SUR-MD 
20 0.003 Trans 642.15 SUR-MD 
20 0.003 Trans 606.28 SUR-MD 
20 0.003 Trans 588.29 SUR-MD 
20 0.003 Trans 588.55 SUR-MD 
20 0.003 Trans 609.60 SUR-MD 
20 0.003 Trans 600.08 SUR-MD 
20 0.003 Trans 645.94 SUR-MD 
20 0.003 Trans 620.49 SUR-MD 
20 0.003 Trans 627.12 SUR-MD 
20 0.003 Trans 634.75 SUR-MD 
20 0.003 Trans 641.24 SUR-MD 
20 0.003 Trans 651.31 SUR-MD 
20 0.003 Trans 676.77 SUR-MD 
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Figure 2  Failure data as a function of stressing rate, and regression line 

 

Pooling Time Dependent Data 
 If subcritical crack growth is a dominant time dependent failure mechanism in the 
analysis of ceramic gun barrels, then it would make sense to develop pooling techniques where 
data from various specimen geometries could be combined into a common data pool in order to 
estimate improved parameter values.  However, up to this point in the project specimen 
geometries, e.g., C-ring and sectored flex bars, have been developed to interrogate specific flaw 
populations.  Even if fractography could identify common flaw populations between two or more 
data sets, pooling techniques for censored data are not available for fast fracture data, let alone 
time dependent data.  So the discussion that follows focuses on data sets with a single flaw 
population.   
 
 Conceptually pooling data results in more information available to estimate parameters.  
Parameter estimates based on a combined data set therefore would yield improved values over 
the estimates from a single data set.  For time dependent failure data (as well as fast fracture 
data) the key to pooling data this lies in the ability to transform failure data to a common 
specimen geometry before extracting parameter estimates.  The most convenient specimen 
geometry to convert to is a tensile specimen with a unit gage geometry (volume or area).  
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Focusing the discussion on data sets with surface defects, then with kAT = 1.0 equations 13 and 
35 become 
 
 ( ) ( ) σσ &̂ˆ 1
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A
N D  (36) 
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For an arbitrary test specimen with a surface defect population 
 
 ( ) ( ) σσ &̂ˆ 11 ++ = N
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Assuming the same flaw population is interrogated using either the simple tensile specimen with 
a unit gage surface or an arbitrary test specimen, the true value of BA would be same for both 
geometries.  Thus equations 37 and 39 are equivalent, which leads to the following relationship 
 

 ( ) ( )1
2

1 +
−

= AA

A

Nm
N

TAA kADD  (40) 
 
To convert failure data for an arbitrary test specimen geometry, take the relationship from 
equation 40 and insert it into equation 38.  This yields the following expression for converted 
stress values at failure 
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This conversion is similar to the conversion that takes place when pooling fast fracture data. 
 
 The conversion and subsequent parameter estimation computations are not without their 
difficulties.  Consider that for surface defects 
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and in addition 
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Thus to make the conversion we need to know the parameter estimate for NA a priori.  However, 
the data is being pooled in order to improve estimates in NA (as well as BA).  Thus a numerical 
algorithm must be developed to minimize the sum of the squares of the residuals, residuals that 
will be defined in terms of CONVσ̂ .  Note that the regression equations for D and N  available in 
ASTM C 1368 will not be applicable to pooled data.  New regression estimators are required.  

 

Summary 
A methodology has been established to extract the time dependent parameters B and N 

from failure data obtained using any type of specimen geometry.  These two parameters along 
with fast fracture Weibull parameters are necessary in conducting time dependent reliability 
analyses using CARES/Life.  The parameter estimation technique was demonstrated using a data 
base available in the open literature since time dependent failure data from the gun barrel 
program was not available when this report was compiled.  Note that bootstrapping methods can 
be implemented through the use of equation 33.  Bounds on parameter estimates using bootstrap 
techniques would be based on known values of the fast fracture Weibull parameters.  Care must 
be taken to faithfully reproduce the same number of failure data at each stressing rate that 
appears in the experimental data set.  Finally, a pooling approach was outlined in the event that 
time dependent failure data from multiple specimen geometries representing a single flaw 
population are made available. 
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